
Atari ST Multi-Palette Pictures and Global Optimization
Silly Venture 2016,Gdaǹsk,Poland

François Galea aka Zerkman/Sector One

Nov 12th, 2016

1 / 23

Outline

Context
Overview
History
Multi-Palette Picture

Multi-Palette Display
How it works
MPP display modes
MPP extended color modes

Palette generation and Optimization
A Brief Introduction to Operations Research
The Multi Palette Assignment Problem
Overview of possible solution methods
MPP Greedy method
Simulated annealing method

2 / 23

Context

Atari ST: A revolutionary personal computer (in 1985)

I 16-bit, 8 MHz microprocessor (Motorola 68000)

I Modern graphics: 320x200 screen image resolution, 16 colors !

I color palette entries from a set of 512 possible colors, then 4096 on the STe (1989)

Problem: display images with modern color standards.

Question: is it possible to display images with more than 16 colors on the screen ?

Spoiler alert: yes!

3 / 23

Context

Atari ST: A revolutionary personal computer (in 1985)

I 16-bit, 8 MHz microprocessor (Motorola 68000)

I Modern graphics: 320x200 screen image resolution, 16 colors !

I color palette entries from a set of 512 possible colors, then 4096 on the STe (1989)

Problem: display images with modern color standards.

Question: is it possible to display images with more than 16 colors on the screen ?
Spoiler alert: yes!

3 / 23

Tweaking the display limitations

From the beginning: change the color palette between scanlines

I Use of horizontal blank or timer-B interrupt handlers to perform color palette
changes

I Raster effects by changing the background color

I Neochrome Master (early 1990s)

Since then, various tools using synchronized code to increase the number of colors per
line

I 1987: Spectrum 512

I 24bit.tos (Les palettes étendues) by Mathias Agopian

I Photochrome by Doug Little

I Multipalette Picture Format by François Galea (me!)

I ... and probably more

4 / 23

Multi-Palette Picture (MPP)

I MPP uses synchronized code to:
I change the palette entries while the scanlines are decoded by the Shifter chip

I Spectrum 512: 44 colors per line!
I MPP: 56 colors per line on STe, 54 on ST

I possibly do that in fullscreen
I 412x272 screen resolution, 48 colors per scanline

I The image encoder uses combinatorial optimization techniques to decide the color
values

I MPP file format, with tags similar to SNDH

I Free software (WTFPL), source code available on
http://github.com/zerkman/mpp

5 / 23

http://github.com/zerkman/mpp

Outline

Context

Multi-Palette Display
How it works
MPP display modes
MPP extended color modes

Palette generation and Optimization

6 / 23

Video display basics

In case you never knew:

7 / 23

How multi-palette works
Consider this video-synchronized piece of code:

lea palette,a1

lea $FF8240,a0

move.w (a1)+,(a0)+

move.w (a1)+,(a0)+

move.w (a1)+,(a0)+

move.w (a1)+,(a0)+

What is happening ?

I First move changes the background color (0), second move changes color 1 and so
on

I On ST low resolution, displaying a pixel takes 1 CPU cycle

I Each move is executed in 12 cycles → each color change is effective 12 pixels to
the right of the previous one

8 / 23

MPP display modes

As of today, MPP features 4 different display/screen modes:
I Mode 0: based on move.l instructions

I Each move.l takes 20 cycles and performs two color changes
I 48 colors per scanline, with good horizontal repartition.

I Mode 1: based on movem.l instructions
I half movem.l instructions load color values into registers, the other half write the

values into palette registers.
I 54 colors per scanline, with irregular repartition.

I Mode 2: using the STe’s blitter
I A single blitter operation during the whole image scanning to perform writes to the

color palette regiters in a cyclic way.
I A color change is performed every 8 cycles/pixels.
I 56 colors per line, with very regular repartition.

I Mode 3: fullscreen and movem.l instructions
I 48 colors per line, irregular.

9 / 23

MPP display modes

I Non-fullscreen modes set all 16 palette entries before each line is displayed, then
perform palette updates during image decoding

I In fullscreen, there is not enough time between scanlines to reset the whole
palette → 10 colors from the above scanline are reused

I The horizontal position of each color change for each screen mode is perfectly
known

I Modulo some wakestate issues :)

I The general color model is then as this:

X position 0 1 2 ... 4 ... 12 W-1
pal. interval 0..15 0..15 0..15 0..15 1..16 1..16 2..17 2..17 N-16..N-1

10 / 23

MPP Extended color modes
MPP enables palettes with 1 additional bit per component, allowing to display

I 3375 (153) colors on ST

I 29791 (313) colors on STe

The additional bit is simulated by alternating the colors at each screen refresh, giving
the illusion of intermediate colors.

I F.I, a 4-bit component value of 11 can be achieved on ST by alternating 3-bit
component values 5 and 6.

I Alternate the use of low and high values on even/odd lines, to maintain a
constant brightness level and avoid a flashing effect between frames.

Two ways of doing that:

I Transform a palette array with extra bits into two alternating palette arrays with
the native color format

I Encode two pictures with alternated component values (better quality, but almost
twice the memory size)

11 / 23

Outline

Context

Multi-Palette Display

Palette generation and Optimization
A Brief Introduction to Operations Research
The Multi Palette Assignment Problem
Overview of possible solution methods
MPP Greedy method
Simulated annealing method

12 / 23

A Brief Introduction to Operations Research

A research field to solve difficult optimization problems, modelized in a mathematical
way:

I A set of variables represent the unknowns of the problem

I A set of constraints on the variables define the feasible solution space

I An objective function to be optimized to get the solution quality as good as
possible

A huge set of methodologies exist to solve such problems. They are divided into two
major classes:

I Exact methods to find the optimal solution.

I Approximate methods to find a good enough solution. Much shorter solution
times.

13 / 23

The Multi Palette Assignment Problem

Problem: In a specified display mode, for a scanline, being given a specific input array
of true color pixels, determine the values of all palette entries.

I Once the palette values are found, finding the correct pixel values is
straightforward.

I The problem is solved at each scanline.

Let’s formulate things a bit:

I A color c is a vector with 3 components c = {cr , cg , cb}
I The color distance function between two colors c and c ′ is

cdist(c , c ′) = (cr − c ′r)2 + (cg − c ′g)2 + (cb − c ′b)2

14 / 23

The Multi Palette Assignment Problem
Problem parameters:

N number of palette entries per line

W number of pixels per line (320 or 412)

pj the color value of the j th pixel in the original image line, 0 ≤ j < W

fj the first valid palette index for the j th pixel — last one is fj + 15 ≤ N

Variables:

xi The chosen color for the i th palette entry

The solution cost at pixel j is:
fj+15

min
i=fj

cdist(pj , xi)

Then our objective function to be minimized is:

W−1∑
j=0

fj+15

min
i=fj

cdist(pj , xi)

15 / 23

The Multi Palette Assignment Problem

Constraints:

I Border colors (0 on the left, 32 or 48 on the right) are forced to black.
I We reduce the search space by only allowing color changes that correspond to

colors in the original image in the pixel interval for palette entries
I Pre-calculated array of possible colors for each palette entry

16 / 23

Exact methods for OR problems

Exact methods are used when an optimal solution is needed. Generally take a lot of
time.

I Exhaustive search: brute force
I Divide and conquer: recursive search by dividing a problem into hopefully easier

subproblems.
I e.g solve the problem for all possible values for a specific xi and take the best

solution.

I Branch and bound: D&C + a bounding method to eliminate some subproblem
sets.

A (buggy) B&B solver is in MPP. Relatively useless.

17 / 23

Approximate methods

Approximate methods to find a good enough solution. Much shorter solution times.

I Greedy algorithms: each choice made is definitive. Usually fast, with moderate
solution quality.

I Local search: explore the solution set by the means of a neighborhood function,
allowing to jump from one solution to another, stop when no better solution can
be found (local optimum)

I Metaheuristics: more or less nature-inspired methodologies to search for good
solutions while avoiding local optima.

I genetic algorithms
I scatter search
I tabu search
I ant colony
I simulated annealing
I ...

18 / 23

MPP Greedy method

A simple algorithm to find a “not too bad” solution. Inspired from 24bit.tos by
Mathias Agopian

initialize all xi values to −1
j ← 0
for all j ′ ∈ [0..N − 1] do

if no xi contains pj , for all i ∈ [fj ..fj + 15] then
if there exists one xi = −1, such as i ∈ [fj ..fj + 15] then

xi ← pj
end if

end if
j ← j + 4
if j ≥W then

j ← j −W + 1
end if

end for

19 / 23

Simulated annealing

“Simulated annealing is a probabilistic technique for approximating the global optimum
of a given function. Specifically, it is a metaheuristic to approximate global
optimization in a large search space.” (Wikipedia)

I A metaheuristic inspired from a technique in metallurgy

I Can be seen as an extension of local search

I Very simple to understand (and to code)

What it is not:

I Complicated (unlike many other metaheuristics)

20 / 23

Simulated annealing

Like local search, uses a neighborhood function which randomly generates a new
solution by performing a minor change on a current solution.

I e.g, change one palette value

I Exploits the fact that neighbor solutions potentially are of the same level of quality

I Solution values are faster to compute, as in our case we don’t have to re-compute
the whole sum of minimum color distances

It is an iterative exploration process, where the solution space is explored by performing
moves from one current solution to a neighbor solution.

I Makes use of a temperature value which decreases along time.

I The probability of accepting a new solution depends on the temperature.

21 / 23

Simulated annealing

If the current solution has the value v , and the temperature is T , and considering a
random number r ∈ [0, 1], the new solution of value v ′ is accepted if the following test
is successful:

r ≤ e
v−v′
T

I always true if v ′ ≤ v

I also often true if v ′ > v and T is high

Temperature decrease scheme: The temperature is regularly decreased after a fixed
number of iterations.

I that number depends on the optimization level specified by the user.

Stop criterion: the algorithm stops when the temperature reaches a certain value,
depending on the best and worst solution values found so far (see source code for more
details !)

22 / 23

Conclusion

I Suitable as a graphics interchange format
I Silly Venture graphics compo ?

I Source code is available at http://github.com/zerkman/mpp
I Can be used in a lot of ways:

I demos
I import/export plugin for graphics software
I your own silly projects

I Can be extended/adapted to specific needs
23 / 23

http://github.com/zerkman/mpp

	Context
	Overview
	History
	Multi-Palette Picture

	Multi-Palette Display
	How it works
	MPP display modes
	MPP extended color modes

	Palette generation and Optimization
	A Brief Introduction to Operations Research
	The Multi Palette Assignment Problem
	Overview of possible solution methods
	MPP Greedy method
	Simulated annealing method

